8.4 Areas Between Curves and Lines

教材内容

基本概念

学习目标:掌握曲线与直线之间面积的计算方法,结合积分与几何图形面积。
面积 = 几何图形面积 - \(\int_a^b f(x) dx\)
重要:曲线与直线围成的区域面积可以通过积分与几何图形面积相结合的方法计算。

Example - 基础曲线与直线间面积

题目:

The diagram shows a sketch of part of the curve with equation \(y = x(4 - x)\) and the line with equation \(y = x\).

Find the area of the region bounded by the curve and the line.

解:

  1. 找交点:\(x(4 - x) = x\)
  2. \(3x - x^2 = 0\)
  3. \(x(3 - x) = 0\)
  4. \(x = 0\) 或 3

Area beneath curve = \(\int_0^3 (4x - x^2) dx\)

Shaded area = area beneath curve - area beneath line

Area beneath line = \(\int_0^3 x dx = \left[\frac{x^2}{2}\right]_0^3 = \frac{9}{2}\)

Area beneath curve = \(\left[2x^2 - \frac{x^3}{3}\right]_0^3 = 9\)

Shaded area = \(9 - \frac{9}{2} = \frac{9}{2}\)

Example

Example 7 - 复合图形面积

题目:

The diagram shows a sketch of the curve with equation \(y = x(x - 3)\) and the line with equation \(y = 2x\).

Find the area of the shaded region OAC.

解:

  1. 找交点:\(2x = x(x - 3)\)
  2. \(0 = x^2 - 5x\)
  3. \(0 = x(x - 5)\)
  4. \(x = 0\) 或 5,所以 \(b = 5\)

The curve cuts the x-axis at \(x = 3\) (and \(x = 0\)) so \(a = 3\).

The point C is (5, 10).

Area of triangle OBC = \(\frac{1}{2} \times 5 \times 10 = 25\)

Area between curve, x-axis and the line \(x = 5\) is:

\(\int_3^5 x(x - 3) dx = \int_3^5 (x^2 - 3x) dx\)

\(= \left[\frac{x^3}{3} - \frac{3x^2}{2}\right]_3^5\)

\(= \left(\frac{125}{3} - \frac{75}{2}\right) - \left(\frac{27}{3} - \frac{27}{2}\right)\)

\(= \frac{26}{3}\)

Shaded region = \(25 - \frac{26}{3} = \frac{49}{3}\)

Example 7 Example 7 solution

解题策略

Problem-solving:Look for ways of combining triangles, trapeziums and direct integrals to find the missing area.
  1. 画图:画出曲线和直线,标出交点
  2. 确定积分限:根据交点确定积分的上下限
  3. 计算几何面积:计算相关三角形或梯形的面积
  4. 计算积分:计算曲线下的积分值
  5. 求差:几何面积减去积分值得到最终面积

重要公式

三角形面积 = \(\frac{1}{2} \times 底 \times 高\)
梯形面积 = \(\frac{1}{2} \times (上底 + 下底) \times 高\)
矩形面积 = 长 × 宽

注意事项

常见错误:
学习建议:重点掌握交点求法,多做复合图形面积计算,养成先画图的习惯。